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Abstract

A Galilean covariant approach to classical mechanics of a single particle is described.

Within the proposed formalism we reject all non-covariant force laws defining acting forces
which become to be defined covariantly by some differential equations. Such an approach
leads out of the standard classical mechanics and gives an example of non-Newtonian me-

chanics. It is shown that the exactly solvable linear system of differential equations defining

forces contains the Galilean covariant description of harmonic oscillator as its particular case.
Additionally we demonstrate that in Galilean covariant classical mechanics the validity of
the second Newton law of dynamics implies the Hooke law and vice versa. We show that the

kinetic and total energies transform differently with respect to the Galilean transformations.

1 Introduction

Recently we have proposed a new approach to classical mechanics which leads to a manifestly

Galilean covariant models of mechanics for a single interacting particle [1]. Our main goal was

to construct a self-consistent and complete scheme avoiding all relations of standard classical

mechanics which break the Galilean covariance. It is easy to see that all such relations belong to

the class of the so-called "constitutive relations" [2] and in order to achieve our goal we had to

reexamine the role of these relations in mechanics.:_=_The relation between momentum and velocity

is an example of the Galilean covariant constitutive relation [3] while all explicit expressions of

the mechanical forces in terms of positions and velocities, called force laws, obviously break this

covariance. Hence, in a Galilean covariant formulation....... of classical mechanics of a single particle
we have to reject all known force laws. To keep the formalism as predictive as the usual one

we propose to determine all mechanical quantities from the set of differential equations of the
evolution type.

Our program leads us to a broader than Newtonian formalism model of classical mechanics

in which more than one vector-valued measure of mechanical interaction is introduced. The time

evolution of these measures is described by a set of differential equations called the equations of the

environment which are used to determine the interaction of the particle with its environment in a

fully covariant way. The simplest version of such a scheme contains two measures of interaction:
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the customary force ff (t) measuring the momentum non-conservation and a new quantity which

we have called the influence l(t) governing the time evolution of the acceleration. We do not

assume a priori the Galilean covariant Newton's second law of dynamics in the form

Mff(t) = F(t) (1.1)

where M denotes the inertial mass of the particle because this equation is not of the evolution

type for the acceleration and contains a physical constant. According to our general philosophy [2]

we avoid to use any such constants unless we really need to introduce them as phenomenological

parameters. In our case this will happen only for the equations of the environment for which

without any doubt we are forced to use in the theory some information of the phenomenological

character. All the remaining equations describing the particle are universal, interrelate only basic

theoretical concepts and do not contain any phenomenological constant. In our theory the exper-

imental input is used therefore only for the description of the environment and we consider this

fact as a big advantage of our formalism. The relation between classical Newtonian mechanics

based on the equation (1.1) and our scheme is established using (1.1) as a constraint put on the

set of solutions of the differential equations. It is also a constraint put on solutions of the equation

d¢ (t) -
= M 1 (t) (1.2)

which in the framework of the Newton's mechanics follows from the definition of f(t). The solu-

tions of our model which satisfy (1.1) we sha!l:al] Newtonian solutions while solutions satisfying

the relation (1.2) only will be called the generalized Newtonian solutions.

2 Linear model

The aim of this talk is to illustrate our approach on a simple example of linear evolution equations
for the force and influence. We shall show that such a model includes, as its particular case, the

Newtonian mechanics of the material point which motion is defined by the force provided by a

linear in position and velocity force law.

In the case under consideration the complete set of differential equations describing the SyStem

consists of two purely kinematical equations of motion

d (t)
7- = (2.1)

d (t) =
dt

one dynamical equation of motion dd(t):

= :(0

one equation of balance

:.

(2.2)

(2.3)

(2.4)
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and the system of two equations of environment

dP(t)
dt

- _P (t) + _i'(t)

dr(t)
dt = "_p(t) + `sf(_)

(2.5)

where :E(t), _7(t), ff (t) and i(t) are the trajectory function of the particle, its velocity, acceleration

and momentum, respectively. The meaning of ff (t) and f(t) has been explained above and the

parameters a, 8,'Y and `5 represent dimensional coupling constants specifying the model.

The model is covariant with respect to the Galilean transformations parametrized by a rotation

R, a boost if, and a space-time translation (i, b) if all mechanical quantities used obey the following
transformation rules

_(t) --, _'(t') = nZ(t) + at + i

_(t) --, Z'(t') = R_(t) +

i(t)--+ i'(t') = Ri(t)

i(t) --. i'(t') = Ri(t) + m

P (t) --+P'(t') = nP (t)

f(t) --, ?(t') = nr,,,,;(t)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where

t --+ t'= t + b (2.12)

and m is the Galilean mass of the particle [3] which we shall not assume to be equal to the inertial

mass.

As we stressed in the Introduction the only external parameters characterizing the model are

coupling constants in the equation of the environment (2.5). The mutual relation between them

defines the shape of general solution of (2.1) - (2.5). Denoting by A the matrix of coupling

constants

A:( a _) (2.13)"r

and their following combinations by A+

l [trA 4- _/(TrA>'-4detA] (2.14)A+=

we may write down for 4detA > (TrA) _ the general solution of the equations (2.1) - (2.5) in the
form

e(t) = A+ Bt + Ct 2 + if) exp(A+t) + yE exp(A_t) (2.15)

_7(t) =/_ + 2Ct + 6 A+ exp(A+t) + ff_ A_ exp(A_t) (2.16)

if(t) = 2C +/) A_ exp(A+t) + if: A2_'exp(A_t) (2.17)

if(t) 15 ,5- A+ 2 6 exp(A+t) (5- A_ As ff_ ezp(X_t) (2.18)
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]'(t) = A_+5 exp(A+t) + A__Etxp(A_t) (2.20)

Vector-valued constants A,/_, C,/_, 1_ and 13 are the integration constants of the system of differ-

ential equations (2.1) - (2.5) and in order to satisfy the transformation rules (2.6) - (2.11) they

have to transform in the following way

A ---, ,4'= RA-bRB + b2nC-bff + ff (2.21)

g _ $'= RB- 2bRff + ff (2.22)

--, C'= RC (2.25)

.D _ D'= RD ezp(-A+b) (2.26)

[: _ E,'= Rff, exp()__b) (2.27)

fi _ P'= RP +mff (2.28)

which explicitly show how their values depend on the choice of the reference frame.
Here we should like to stress the difference between our approach, demanding the Galilean

covariance as the most fundamental feature of the theory and standard expositions of mechanics

which treat it almost always as a branch of the theory of ordinary differential equations. There

is no principle of relativity in the theory of differential equations and, consequently, there is no

problem of transformation properties of the solutions and integration constants. In contradistinc-

tion to mathematics, this subject is of primary interest to physics and we have to realize that the

integration constants take the whole responsibility for the transformation properties of all physical

quantities. This means that the original preparation of physical system already contains almost

the whole information on the symmetries of this system. The time evolution of the system has

only to preserve the original symmetries. It should not be unexpected that in our scheme which is

an example of a non-Newtonian mechanics (and, as a matter of fact, its generalization) the careful

analysis of the properties of integration constants and their relation to the initial conditions may
lead out of the framework of standard classical mechanics.

There is a lot of different initial conditions which may be imposed on the solution (2.13- 2.18).

For instance, we may use the values of the first four derivatives of the function £ (t) at the same

instant of time to to fix the values of the constants ,4 to E. It remains in obvious contradiction to

the widely spread opinion that in mechanics only the initial position and velocity are needed for

the unique determination of the trajectory. This is the property of Newtonian mechanics only in

which the relation (1.1) is always satisfied. In our formalism the acceleration if(t) and the force

F(t) are a priori independent as determined from independent equations and the relation (1.1)

imposed on these quantities reduces the number of degrees of freedom for initial conditions. It

enables us to calculate some parameters of a model in terms of the other. We shall see below that

it may be used for determination of the inertial mass M in terms of the coupling constants given

by elements of the matrix A.

The analysis of the model depends on the mutual relation between TrA and detA. In order to
concentrate the attention on the harmonic oscillator problem we shall omit the case TrA > 4detA

because it does not, describe oscil!at0rY motion. The complete analysis of the problem will be

found in [4]. : -- ..... -
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3 Oscillatory motion

It is immediately seen from (2.14) and (2.15) that the trajectory (2.15) oscillates if the inequality

(TrA) 2 < 4detA holds and the oscillations may be damped or not depending on the value of Re_+.

The reality of all mechanical quantities requires that the constants D and/_ are complex valued

and they must be complex conjugated

5 = £" (3.1)

which is the first condition restricting the arbitrariness of integration constants A, B, C, D,/_. The

Newtonian condition (1.1), as well as its generalization of the form

F(t) = M [5(0- 2d] (3.2)

are satisfied provided

M- _-)_+ A+ = _-_- A_
7 3'

supplemented additionally in the Newtonian case by the Galilean invariant relation

(3.3)

= 0 (3.4)

Relation (3.4) fixes invariantly one of the parameters of the solution and we shall use it as a
criterion of the Newtonian character of the solution considered.

Substituting in (3.3) the values A+ from (2.14) we come to the conclusion that the equality

(3.3) may be satisfied only for a = 0 which gives

M =/3 (3.5)

The value of the Galilean mass m remains arbitrary because it is a parameter which identifies the

particle and has nothing to do with its possible interactions.

Taking into account (2.15) and (2.19) it is easy to see that the famous Hooke force law

F(t) = -k_(t) (3.6)

may be satisfied in a selected reference frame for which A = /3 = C = 0 i.e. only for reference

frames satisfying the criterion (3.3) of the Newtonian character of mechanics. This means, be-

cause of the invariance of this relation, that the Newtonian condition (1.1) is equivalent to the

requirement of the existence of the Hooke law. This fact has a far going consequences because in

all treatments of the foundations of mechanics the forces are measured by dynamometers which

operate on the principle of the Hooke law. Therefore any mechanics using such an operational def-

inition of forces must be Newtonian. The Newton laws of mechanics follow thus from the adopted

operational definition of force. In order to detect any violation of these laws we should first invent

a new operational definition of the force not based on the Hooke law. It is indeed a very surprising

conclusion which however uniquely follows from our more general approach to mechanics.

The above conclusion is less surprising after observing that the linear relation between mo-
mentum and velocity

if(t) = MY(t) (3.7)
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is possible also in the Newtonian mechanics only. Therefore the almost always assumed relation

(3.7) prevent to observe any deviation from the Newton's laws. We have to conclude that many

fundamental assumptions of standard mechanics are interrelated and their possible interrelations

may be found only if the analysis is performed in the framework of the approach to mechanics

more genera] than the standard one. Our method is just an example of such a scheme.
For the non-Newtonian mechanics we may replace the Hooke law by the relation

P(t) = -k V(t)- Bt-C (3.8)

which for A =/3 = C = 0 reduces to (3.6). Using again the solutions (2.15) and (2.19) we come

to the conclusion that (3.8) may be satisfied only if

Together with (3.3) and (2.14) it implies that

(TrA)¢(TrA) 2 - 4detA = 0

(3.9)

(3.10)

The square root must be different from 0 due to the condition 4detA > (TrA) _ assumed and
therefore we must have

TrA = 0 (3.11)

Since we already have got a = 0 this condition gives _ = 0. The frequency of oscillations is given

by
w 2 = detA (3.12)

and because of (3.5) and a = _ = 0 we have

w 2 = -_37 = -M7 (3.13)

We may therefore conclude that in the framework of Galilean covariant approach to classical

mechanics the non-Newtonian generalization of the standard harmonic oscillator is given by linear

evolution equations for the force and the influence and that the matrix of the coupling constants
has the form

A = _2 (3.14)
M' 0

The most general Galilean covariant linear relation between the force, the position and the velocity

is the non-Newtonian generalization of the superposition of Hooke and linear friction (r/ < 0) forces

J_ (t)=,7 (0"(t)-/_- Ct)-n (£(t)- A-/3t- (_t _) (3.15)

which, after substitution of (2.15), (2.16) and (2.19) into it leads to the following relations between

parameters of the model

MX_. = ,TX+-,_
(3.16)

MA 2- = r/A_-x
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if additionally the generalized Newtonian condition (3.2) is demanded. We are still restricted to

the case 4detA > (TrA) 2 which gives the only solution of (3.16) in the form

? (3.17)

"7 = M2 (3.18)

and it immediately follows from it and (2.15) that the matrix of coupling constants

0, M )A= x ,7

describes damped oscillatory motion with frequency given by

1 / 2
w = _-_Vr/ - 4toM

and an amplitude damping exponentially according to the factor exp_-_-;.t.
ZM

(3.19)

(3.20)

4 Kinetic and total energies

In the standard approach to classical mechanics the kinetic energy is defined by one of the equiv-
alent expressions

k(t) = fi2(t) M g2(t) 1
2M - 2 - _ if(t), g(t) (4.1)

where M is the inertial mass of the particle. Relations (4.1) are a straightforward consequence of

the Newtonian relation between momentum and velocity (3.7) which in Galilean covariant scheme

proposed should be treated as additional assumption only. Discarding (3.7) as a priori valid

we cannot identify the inertial mass present in second law of dynamics and the mass parameter

appearing in the momentum transformation rule (2.9). The general relation between momentum

and velocity written down with Galilean mass introduced into it has now, according to [3], the
form

fi(t) = (m - M)g(to) + Mg(t) (4.2)

where _7(t0) is an integration constant having the meaning of an initial velocity which has to be
specified from initial conditions.

We define the kinetic energy as bilinear form of momentum and velocity satisfying two funda-
mental conditions put on it:

i.) the balance equation

and

dk(t)
= F(t). g(t) (4.3)

dt

ii.) the Galilean transformation rule

k(t) _ k'(t') = k(t) + Rfi(t) . if+ _rnu = (4.4)
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According to these conditions [3] the kinetic energy is given by

k(t) = m - M _2 M_._. .2 (to) + Tv (t) (4.5)

which, in notation introduced by (2.15) - (2.20) and in Newtonian regime (_ = 0, may be written

down as

k(t) = (fi- Mg)2 M_.:, ,
2(m - M) + --_-v (t) (4.6)

To obtain the correct formula for the kinetic energy in non-Newtonian regime we shall start with

the general expression

k(t) A_(t) + B¢_(t) + cf(t). _(t)+

+,_. _(t) + _t + v? + A

(4.7)

The transformation rule (4.4) implies the following conditions and transformation properties which

parameters in (4.7) have to obey

A' = A, B' = B, C' = C

B = -2(1 - 2mA)

C = 1 - 2mA

.'= _, (4.8)

_'= RY,

/1' = # - 2ub - R,_. ff

A'= a + .v - .b- nx. +R(X. b

while the balance equation (4.3) gives

1
A=

2(m - M)'
S

mM M
C=

2(m - M)' m - M

._ = -2MC

(4.9)

2 M2 (_
"= rgYSu
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It is obvious that the balance equation (4.3) cannot fix the value of the constant A in (4.7) which

remains arbitrary but has to satisfy the transformation rule listed in (4.8) as the last. For example,
we may represent A in the following form

Z_ = -_. _0- _t0 - vt0_ (4.10)

with (x0, to) denoting the space-time coordinates of an arbitrary event. The)" may be chosen as

coordinates of an event for which the momentum and the velocity of the particle simultaneously

vanish. Such a choice guarantees that the kinetic energy also vanishes at this point which we
consider the most natural condition possible to demand.

Substituting all values of coefficients (4.9) into (4.7) we obtain

k(t) = (/3_M/3):
2(m - M) + Mg2(t) - 2id. [it(t) - a_0(t)]-

(4.11)
2M 2M 2

m--- )14 (/3 - M/_). d to + --C2t02m-M

and comparing it with the expression obtained for the Newtonian case (4.5) we see that the only

parameter which controls the Newtonian character of mechanics is _ the vanishing of which is
equivalent to vanishing of _, p, v and A in any reference frame.

In contradistinction to the kinetic energy the definition of the total energy E for conservative

system cannot be based on the above listed basic properties of the kinetic energy. The balance
equation for the total energy

dE

d--t-= 0 (4.12)

does not give any hint on the transformation rule of E. This rule cannot be of the same shape as

for the kinetic energy since this immediately leads to a contradiction. Indeed, if we suppose

1 -'2

E ---, E'= E+Rff(t)-if+ _mu (4.13)

the conservation law (4.12) implies that

d_(t) ._ 0 (4.14)
dt

which is true for free particles only. To construct the correct expression for the tota] energy

we shall start from the general bilinear form of _7,ig, _, t,/_, T which satisfies the following two
conditions:

i.) it reduces to the expression for k(t) if F = f = 0,

ii.) it satisfies the conservation law (4.12).

After straightforward but tedious calculations it can be shown that the only form which obeys
these two conditions is given by

(4.15)
E = k(t)+ 2(7M) a _ + 12

+ -_F'g-lf'g+-_ F'd"t
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and consequently we shall take it as the definition of the total energy for the Galilean covariant
harmonic oscillator.

It is now easy to see that under Galilean transformations the total energy changes according

to the following rule

E + E' = E + R _(¢) + -_

The most important point is connected with the quantity in the second term. It shows that the

momentum associated with the total energy E is not the momentum/_(t) but

1 (_5.P(t)- M[(t)) (4.17)
e = fi(t) + -_

which is conserved in time because of the fundamental equations (2.4) - (2.5). The difference in the

transformation rules for the kinetic and total energies is a new fact in mechanics which without our

Galilean covariant approach to mechanics could not be derived. Here we would like to remark this

so important fact is not specific for the non-Newtonian case only. As we have mentioned several

times the Newtonian case which is equivalent to the Galilean invariant choice C = 0,_ = 0.

However it must not be taken directly by putting these values into (4.15) because such a choice

corresponds to the singular system of algebraic equations used to determine coefficients in (4.15).

The correct result is given by

EN=y g2+_+w,] +x f_+ f (4.18)

where w2 = -')'M according to (3.13) and X is arbitrary parameter. It remains in full agreement

with our previous result obtained in [1] within less general approach and gives for the total energy
the Galilean transformation rule

' (EN---* E N= EN÷ R P÷w2 )'if+ I-rnff22 (4.19)

which means again that the total energy transforms differently from the kinetic energy and that

its transformation properties are associated with a conserved quantity

P =/7(t) + Mf(_) (4.20)
_d 2

and not with ordinary momentum/7(t).

5 Conclusions

We have demonstrated that the requirement of the Galilean covariance of classical mechanics leads

to a formalism broader than the standard Newtonian one. The new formalism enlarges the class of

mechanical systems including those with some unusual properties. In particular, in the next talk

we shall discuss the application of the formalism obtained to description of the so-called confined

systems.
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V. THERMODYNAMICS AND STATISTICAL MECHANICS
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